
Mathematics and Computing: Level 2

M253 Team working in distributed environments HDP

M253 Resource Sheet

How to decompose a problem

1 Overview

The purpose of this Resource Sheet is to introduce you to several approaches to the

task of breaking down a large problem into a collection of more manageable sub­

problems. We do not intend that you should attempt to follow in detail any one of the

suggested approaches as you attempt the decomposition of the problem posed in your

project scenario. What we hope is that the discussion and examples will give you some

ideas that will help you in your task.

2 Getting to grips with a problem

In focusing on problem identification you must steer a course between being too

general and imprecise about the world in which the problem exists, and being too

specific and precise about potential solutions before you understand the problem.

Initially you need to focus on what the system will do rather than how it will do it, and

part of the solution is to think about where it will do it. The problem is located in the real

world; the solution is located in the computer and its associated software.

Another aspect of identifying the problem to be solved is to ensure that you consider it

from the point of view of the users of your system. The emphasis is not just about how

the users will interact with the system interface but also about how the features that the

system provides will support them in the activities which they have to undertake in the

real world.

If you do not identify the right problem initially then you may build software that

correctly solves the wrong problem. Justified complaints from users of the system will

then be not so much about the failures of the hardware or the software but about the

unexpected and unwanted side effects that their use produces in the real world, due to

the solution not matching the real problem.

This is emphasised in the following quotation from Michael Jackson’s book Problem

Frames: Analysing and Structuring Software Development Problem.

‘It is important to focus directly on a problem, not just going straight to

the design of a solution. The computer and its software are the

solution; the problem is in the world outside the computer. In spite of

good intentions, you can easily confuse the problem with its solution

[...] This book is about the analysis of problems, not about solutions.’

Jackson (2001) p.1

Copyright © 2007 The Open University WEB 00263 2

2.1

Another interesting quotation from the same work makes a related point.

‘For many people in software development the computer remains far

more interesting than the problem world.’

Jackson (2001) p.10

If you are interested in programming, it is all too easy to rush into coding the solution

before you have actually established what the real problem is.

Only when you have reached the situation where you think that you have understood

the overall real world situation and the problem that you are being asked to solve, and

you have elicited the real needs of all the stakeholders that you have identified in the

problem domain, can you begin to think about how you might proceed to form and

describe possible solutions to the problem.

3 Breaking down the problem

Typically your overall problem will be fairly complex and your overall solution will be

equally complex. You need to think of ways in which you can manage that complexity.

The traditional way of doing this is to decompose the original problem into a collection

of simpler sub-problems, each of which can be handled — and hopefully solved more

simply — on its own. At some later stage, by a reverse process of composition, you

can then combine the various solutions to your sub-problems into a solution to the

overall problem.

A clear justification for this approach, taken from the mathematician George Polya's

classic book How to Solve It, states that:

‘Decomposing and recombining are important operations of the mind.

You examine an object that touches your interest or challenges your

curiosity: a house you intend to rent, an important but cryptic telegram,

any object whose purpose and origin puzzle you, or any problem you

intend to solve. You have an impression of the object as a whole but

this impression, possibly, is not definite enough. A detail strikes you,

and you focus your attention upon it. Then, you concentrate upon

another detail; then, again, upon another. Various combinations of

details may present themselves and after a while you again consider

the object as a whole but you now see it differently. You decompose

the whole into its parts, and you recombine the parts into a more or

less different whole.

If you go into too much detail you may lose yourself in details. Too

many or too minute particulars are a burden on the mind. They may

prevent you from giving sufficient attention to the main point, or even

from seeing the main point at all. Think of the man who cannot see the

wood for the trees. Of course we do not wish to waste our time with

unnecessary detail and we should reserve our effort for the essential.

The difficulty is that we cannot say beforehand which details will turn

out ultimately as necessary and which will not.

Therefore let us, first of all, understand the problem as a whole.

Having understood the problem, we shall be able to judge which

particular points may be the most essential. Having examined one or

two essential points we shall be in a better position to judge which

further details might deserve closer examination. Let us go into detail

and decompose the problem gradually but not further than we need

to... it is a very foolish and bad habit with some [students] to start

working at details before having understood the problem as a whole."

Polya (1957) pp.75–76

In order to decompose your problem you need some guidance as to the sort of criteria

you should use for identifying suitable sub-problems and for evaluating the degree to

which these sub-problems are independent, or to which they are inter-related.

2

Ultimately, what you want to achieve is a decomposition of your original problem into a

collection of simpler sub-problems that cover all aspects of the original problem, and

that have clearly understood interactions with each other.

4 Problem frames

In the wider world of problem solving you might expect there to be classes of sub­

problem that reappear in a variety of contexts. Indeed, for some such classes, you

might expect ready-made solutions out there that can be picked up and (re)used in

your composition process with little or no modification.

Amongst the authors who have spent a lot of time thinking about such issues is

Michael Jackson, whose recent book Problem Frames: Analysing and Structuring

Software Development Problems, contains some interesting conclusions and was the

source of some of our earlier quotes.

Jackson begins by pointing out that the field of software development is much less

specialised than more traditional engineering disciplines, and that the individual

developer, and the individual development project, introduce a lot more variety. You

rarely find yourself solving an immediately recognisable and well understood problem

at the top level. Most real-life problems are, in any case, too big and complex to handle

at a single level. You need to structure the overall problem in terms of interacting sub­

problems. Jackson claims that this task can be made much easier by the use of

problem frames.

What Jackson means by a problem frame is an attempt to identify and describe a

recurring situation, to define a simple problem class. When attempting to identify

suitable sub-problems, system developers can use his existing list of problem frames

as a guide, looking for aspects of the overall problem that might fit a given frame.

Then, when a sub-problem is recognised as an instance of a specific problem frame,

system developers can draw on the experience associated with their previous use of

that frame.

The use of problem frames is not associated with any particular software development

methodology. If anything, it is intended as an antidote to the use of methodologies at

too early a stage in the software development process. Most methodologies are

strongly solution-oriented and tend to assume that the problem to be solved is well

understood. The use of problem frames is proposed as a precursor, which will assist

with the process of analysing and structuring the initial problem prior to looking for a

solution.

Jackson makes a distinction between the use of the word ‘system’ to describe the

whole combination of the world and the computer together as opposed to just the

hardware and software at the centre. In this context he comments that you are

attempting to describe the wider system (where the problem resides) rather than the

narrower system (where the solution will reside). Jackson reserves the word ‘machine’

for situations in which he wants to talk about this narrower system, the computer and

its software.

Jackson also makes a distinction between analytic and analogic models; in the first of

these, ‘modelling’ implies that you are describing the system in the outside world,

whereas in the second "modelling" implies that you are describing the system inside

the computer. As far as you are concerned, at this stage of your project you are

concentrating on the analytic activity of modelling what happens in your real-world

system rather than how you will eventually represent the system in the computer.

There are five basic problem classes captured in Jackson's problem frames,

together with a number of flavours or variants on these in order to accommodate

a realistic range of problems. Each frame captures a class, and provides a frame

diagram and associated frame concerns and development descriptions. The

names that Jackson gives to the five basic frames are: Required Behaviour,

Commanded Behaviour, Information Display, Simple Workpiece and

Transformation.

3

Note. What follows are Jackson's brief descriptions of the problem class that each of

these frames addresses, but we do not take the discussion into any further detail here.

We are only introducing problem frames to provide you with one possible way of

thinking about the different categories of sub-problems that you might look for in

decomposing your own problems. We are not proposing that you go for the full

Jackson treatment in the context of this project, although you might find it both

interesting and useful to read the book at some later date.

4.1 The Required Behaviour frame

‘is intended to capture the idea that there is some part of the physical

world whose behaviour is to be controlled so that it satisfies certain

conditions. The problem is to build a machine that will impose that

control.’

Jackson (2001) p.85

A simple example of this is a controller for a set of one-way lights to manage the traffic

flow at some road works.

4.2 The Commanded Behaviour frame

‘is intended to capture the idea that there is some part of the physical

world whose behaviour is to be controlled in accordance with

commands issued by an operator. The problem is to build a machine

that will accept the operator's commands and impose the control

accordingly.’

Jackson (2001) p.89

A simple example of this is the controller for your video player.

4.3 The Information Display frame

‘is intended to capture the idea that there is some part of the physical

world about whose states and behaviour certain information is

continually needed. The problem is to build a machine that will obtain

this information from the world and present it at the required place in

the required form.’

Jackson (2001) p.92

A simple example of this is the speed and distance-travelled information provided on a

car dashboard display.

4.4 The Simple Workpiece frame

‘is intended to capture the idea that a tool is needed to allow a user to

create and edit a certain class of computer processable text, or

graphic objects, or similar structures, so that they can be subsequently

copied, printed, analysed or used in other ways. The problem is to

build a machine that can act as this tool.’

Jackson (2001) p.96

As a simple example of this you could have a tool to create and update information on

an individual's wine purchases and tasting notes.

4.5 The Transformation frame

‘is intended to capture the idea that there are some given computer

readable input(file)s whose data must be transformed to give certain

required output(file)s. The output data must be in a particular format,

and it must be derived from the input data according to certain rules.

The problem is to build a machine that will produce the required

outputs from the inputs.’

Jackson (2001) p.99

4

As a simple example of this you could have a program to analyse the data relating to

an individual's weekly supermarket shopping bills and to identify purchasing patterns,

so that a set of special vouchers can be generated to encourage them to buy more of

specific items.

5 Heuristics

The benefits of a good decomposition of a problem are that, in addition to helping you

to understand the problem, it should help you to describe/document the problem more

clearly and also help you in your attempts to solve the problem. However, there are no

hard-and-fast rules that can be laid down for how to achieve a good decomposition or

even how to recognise that you have achieved a good one. It is important to realise

that, apart from a few relatively trivial problems, there is likely to be a wide range of

possible decompositions, many of which are equally ‘good’, rather than a unique ‘best’

decomposition.

In this context, Jackson comments that:

‘Problem decomposition is not an exact science. But it can exploit

some useful heuristics, and it can be reasonably systematic.’

Jackson (2001) p.269

Possible heuristics include the following.

•	 Identify the core problem – there is often one obvious central need that the

system is intended to handle, so go for this first and work outwards from it.

•	 Identify ancillary problems – around the core there are many sub­

problems, often in the form of information sub-problems related to the core

sub-problem.

•	 Use standard decompositions of sub-problems – some of the problem

frames themselves are naturally of a composite nature, and hence lead to

the identification of further sub-problems.

•	 Identify common concerns and difficulties – when the analysis of identified

sub-problems shows that two or more of them have common issues

associated with them this may indicate the existence of further sub­

problems to handle those issues.

•	 Look for sub-problems with different tempi – if there are activities that need

to take place over very different time scales then these should be treated

as separate sub-problems.

•	 Look for sub-problems with different moods – it may be appropriate to

separate sub-problems relating to what the customer ideally wants from

the system from sub-problems relating to what the customer must have

from the system.

•	 Look for residual complexity – any sub-problem which is still relatively

complex should be broken down into further sub-problems.

•	 Investigate any need to model users – if different groups of users need to

access (any specific parts of) the system then treat each user group as a

separate sub-problem.

5

6 Assessing the decomposition

When you come to the end of your decomposition activity, how should you judge the

success of your efforts? You should have a collection of sub-problems that are each

smaller and simpler than the original problem. They should each be a complete

problem in their own right, in the sense that they do not depend on any of the other

sub-problems for their solution. They should also be complete as a set, in the sense

that between them they cover all the essential issues raised by the original problem.

Insofar as the sub-problems need to interact with each other you should have a clear

description of the nature and extent of their interactions.

Jackson (2001, p.65) points out that at the initial stage of decomposing your problem

into sub-problems you usually find yourself creating several potentially overlapping

‘projections’ of the original problem, that are different views of that problem, rather

than ‘partitioning’ your problem into totally independent sub-problems. These

projections may well share data and need to react to the same external or internal

events affecting the system.

You can see the difference in Figure 1. In the left-hand part of the diagram the problem

is partitioned into five non-overlapping areas, with the implication that no element of

the problem appears in more than one of these areas. In contrast, in the right-hand

part of the diagram, each of the projections overlaps with one or more of the other

projections, so that some elements are shared between the different views of the

system represented by the different projections.

Partitions Projections

Figure 1 Partitions versus projections

7 Needs and features

A somewhat different emphasis than the problem frames approach, and one perhaps

more familiar in traditional requirements engineering, is to concentrate on the issue of

what the users, or more generally the stakeholders, want from the system that is to be

developed. The Rational Software White Paper ‘Features, use cases, requirements,

oh my!’ by Dean Leffingwell provides a very simple, high-level overview of some of the

more important issues that arise in this context.

Leffingwell (2000, p.2) starts by reminding us that the purpose of the requirements

definition phase of system development is to answer the very important, fundamental

question: ‘What, exactly, is this system supposed to do?’

He goes on to distinguish between the real needs of the stakeholders, as seen in the

problem domain, and the features of a system that will be able to meet those needs, as

provided in the solution domain.

Leffingwell (2000, p.2) defines a stakeholder need as ‘a reflection of the business,

personal or operational problem (or opportunity) that must be addressed to justify

consideration, purchase or use of a new system.’

Leffingwell (2000, p.4) defines a feature as ‘a service that the system provides to fulfil

one or more stakeholder needs.’

6

He emphasises the fact that these features are not to be regarded as just a refinement

of the stakeholders' needs. Rather, they are a direct response to the problems

indicated by the stakeholders, and as such they provide a top-level solution to the

problem. These features are described in natural language so that the stakeholders

can easily understand what the proposed system is going to do, and are only

concerned with communicating intent, with no hint of how the system might deliver

them.

Leffingwell indicates that you should be able to describe a system by defining between

25 and 50 features that characterise its behaviour. More than this suggests an

inadequate level of feature abstraction, or possibly an overlarge system that needs to

be divided into several smaller pieces.

He also emphasises the way in which consideration of use cases can be beneficial in

the process of defining system behaviour. Leffingwell (2000, p.4) defines a use case

as ‘the description of a sequence of actions, performed by a system, which yields a

result of value to the user.’ We could say that use cases describe how users and the

system work together to realise the identified features. Typically there will be several

use cases to indicate how a particular feature is to be implemented. Consideration and

elaboration of these use cases moves you closer to your solution in behavioural terms,

although it still keeps you away from the consideration of software requirements.

8 Summary

In this Resource Sheet we have looked at the overall need to break a problem down

into a collection of sub problems, and have considered two rather different approaches

to meeting this need. We are not expecting you to follow either of these approaches in

any detail. What is important is that you can use some of the ideas presented here to

help you approach the task of identifying the most important features or facilities that

your proposed system will provide, taking into account the needs of all the

stakeholders that you have identified.

9 References

Jackson, M. (2001) Problem Frames: Analysing and Structuring Software Development

Problems. New York, ACM Press.

Leffingwell, D. (2000) ‘Features, use cases, requirements, oh my!’ Rational Software

White Paper.

Polya, G. (1957) How to Solve It. 2nd edition. New York, Doubleday Anchor.

7

